《離散數學》課后習題答案
離散數學是研究離散量的結構及其相互關系的數學學科,是現代數學的一個重要分支。以下是由陽光網小編整理關于《離散數學》課后習題的內容,希望大家喜歡!
《離散數學》簡介
隨著信息時代的到來,工業革命時代以微積分為代表的連續數學占主流的地位已經發生了變化,離散數學的重要性逐漸被人們認識。離散數學課程所傳授的思想和方法,廣泛地體現在計算機科學技術及相關專業的諸領域,從科學計算到信息處理,從理論計算機科學到計算機應用技術,從計算機軟件到計算機硬件,從人工智能到認知系統,無不與離散數學密切相關。由于數字電子計算機是一個離散結構,它只能處理離散的或離散化了的數量關系, 因此,無論計算機科學本身,還是與計算機科學及其應用密切相關的現代科學研究領域,都面臨著如何對離散結構建立相應的數學模型;又如何將已用連續數量關系建立起來的數學模型離散化,從而可由計算機加以處理。
離散數學是傳統的邏輯學,集合論(包括函數),數論基礎,算法設計,組合分析,離散概率,關系理論,圖論與樹,抽象代數(包括代數系統,群、環、域等),布爾代數,計算模型(語言與自動機)等匯集起來的一門綜合學科。離散數學的應用遍及現代科學技術的諸多領域。
離散數學也可以說是計算機科學的基礎核心學科,在離散數學中的有一個著名的典型例子-四色定理又稱四色猜想,這是世界近代三大數學難題之一,它是在1852年,由英國的一名繪圖員弗南西斯·格思里提出的,他在進行地圖著色時,發現了一個現象,“每幅地圖都可以僅用四種顏色著色,并且共同邊界的國家都可以被著上不同的顏色”。那么這能否從數學上進行證明呢?100多年后的1976年,肯尼斯·阿佩爾(Kenneth Appel)和沃爾夫岡·哈肯(Wolfgang Haken)使用計算機輔助計算,用了1200個小時和100億次的'判斷,終于證明了四色定理,轟動世界,這就是離散數學與計算機科學相互協作的結果。
離散數學可以看成是構筑在數學和計算機科學之間的橋梁,因為離散數學既離不開集合論、圖論等數學知識,又和計算機科學中的數據庫理論、數據結構等相關,它可以引導人們進入計算機科學的思維領域,促進了計算機科學的發展。
《離散數學》學科內容
1、集合論部分:集合及其運算、二元關系與函數、自然數及自然數集、集合的基數
2、圖論部分:圖的基本概念、歐拉圖與哈密頓圖、樹、圖的矩陣表示、平面圖、圖著色、支配集、覆蓋集、獨立集與匹配、帶權圖及其應用
3、代數結構部分:代數系統的基本概念、半群與獨異點、群、環與域、格與布爾代數
4、組合數學部分:組合存在性定理、基本的計數公式、組合計數方法、組合計數定理
5、數理邏輯部分:命題邏輯、一階謂詞演算、消解原理
離散數學被分成三門課程進行教學,即集合論與圖論、代數結構與組合數學、數理邏輯。教學方式以課堂講授為主, 課后有書面作業、通過學校網絡教學平臺發布課件并進行師生交流。
【《離散數學》課后習題答案】相關文章:
4.匆匆課后習題答案
6.善良課后習題答案
7.社戲課后習題答案
8.雷雨課后習題答案