- 相關推薦
隨機過程(張卓奎著)課后習題答案下載
隨機過程是一連串隨機事件動態關系的定量描述。下面是陽光網小編整理的隨機過程(張卓奎著),以供大家閱讀。
隨機過程(張卓奎著)課后答案下載
隨機過程:基本簡介
一般來說,把一組隨機變量定義為隨機過程。在研究隨機過程時人們透過表面的偶然性描述出必然的內在規律并以概率的形式來描述這些規律,從偶然中悟出必然正是這一學科的魅力所在。
隨機過程整個學科的理論基礎是由柯爾莫哥洛夫和杜布奠定的。這一學科最早源于對物理學的研究,如吉布斯、玻爾茲曼、龐加萊等人對統計力學的研究,及后來愛因斯坦、維納、萊維等人對布朗運動的開創性工作。
1907年前后,馬爾可夫研究了一系列有特定相依性的隨機變量,后人稱之為馬爾可夫鏈。
1923年維納給出布朗運動的數學定義,直到今日這一過程仍是重要的'研究課題。
隨機過程一般理論的研究通常認為開始于20世紀30年代。1931年,柯爾莫哥洛夫發表了《概率論的解析方法》,1934年A·辛欽發表了《平穩過程的相關理論》,這兩篇著作奠定了馬爾可夫過程與平穩過程的理論基礎。
1953年,杜布出版了名著《隨機過程論》,系統且嚴格地敘述了隨機過程基本理論。
隨機過程:研究方法
研究隨機過程的方法多種多樣,主要可以分為兩大類:一類是概率方法,其中用到軌道性質、停時和隨機微分方程等;另一類是分析的方法,其中用到測度論、微分方程、半群理論、函數堆和希爾伯特空間等。實際研究中常常兩種方法并用。
另外,組合方法和代數方法在某些特殊隨機過程的研究中也有一定作用。
研究的主要內容有:多指標隨機過程、無窮質點與馬爾可夫過程、概率與位勢及各種特殊過程的專題討論等。
中國學者在平穩過程、馬爾科夫過程、鞅論、極限定理、隨機微分方程等方面做出了較好的工作。
一個實際的隨機過程是任意一個受概率支配的過程,例子有:
①看做是受孟德爾遺傳學支配的群體的發展;
②受分子碰撞影響的微觀質點的布朗運動,或者是宏觀空間的星體運動;
③賭場中一系列的賭博;
④公路一指定點汽車的通行。
在每一種情形,一個隨機系統在演化,這就是說它的狀態隨著時間而改變,于是,在時間t的狀態具有偶然性,它是一個隨機變量x(t),參數t的集通常是一個區間(連續參數的隨機過程)或一個整數集合(離散參數的隨機過程)。然而,有些作者只把隨機過程這個術語用于連續參數的情形。
如果系統的狀態用一個數來表示,x(t)就是數值的,在其他情形,x(t)可以是向量值或者更為復雜。在本條的討論中,通常限于數值的情形。當狀態變化時,它的值確定一個時間的函數——樣本函數,支配過程的概率規律確定賦予樣本函數的各種可能性質的概率。
數學上的隨機過程是由實際隨機過程概念引起的一種數學結構。人們研究這種過程,是因為它是實際隨機過程的數學模型,或者是因為它的內在數學意義以及它在概率論領域之外的應用。數學上的隨機過程可以簡單的定義為一組隨機變量,即指定一參數集,對于其中每一參數點t指定一個隨機變量x(t)。如果回憶起隨機變量自身就是一個函數,以ω表示隨機變量x(t)的定義域中的一點,并以x(t,ω)表示隨機變量在ω的.值,則隨機過程就由剛才定義的點偶(t,ω)的函數以及概率的分配完全確定。如果固定t,這個二元函數就定義一個ω的函數,即以x(t)表示的隨機變量。如果固定ω,這個二元函數就定義一個t的函數,這是過程的樣本函數。
一個隨機過程的概率分配通常是由指定它的隨機變量的聯合分布來給定的,這些聯合分布以及由它們誘導出來的概率可以解釋為樣本函數的性質的概率。例如,如果to是一個參數值,樣本函數在to取正值的概率是隨機變量x(to)有正值的概率。在這個水平上的基本定理:任意指定的自身相容的聯合概率分布對應一隨機過程。
看過“隨機過程(張卓奎著)”的人還看了:
【隨機過程張卓奎著課后習題答案下載】相關文章:
測試技術(張春華著)課后習題答案下載04-02
信號與系統(張建奇著)課后習題答案下載04-02
隨機信號分析(鄭薇著)課后答案下載04-02
應用隨機過程 (張波 著)課后習題答案清華大學出版社.pdf04-02
隨機過程第四版(劉次華著)課后答案下載04-03
數學實驗(李尚志著)課后習題答案下載04-02
機械原理(謝進著)課后習題答案下載04-02