- 相關推薦
全國碩士研究生入學統一考試數學三試題
在現實的學習、工作中,我們最少不了的就是試題了,試題是命題者根據一定的考核需要編寫出來的。你知道什么樣的試題才算得上好試題嗎?以下是小編收集整理的全國碩士研究生入學統一考試數學三試題,歡迎大家借鑒與參考,希望對大家有所幫助。
全國碩士研究生入學統一考試數學三試題 1
一、選擇題:共10小題,每小題4分,共40分
1、在空間直角坐標系中,方程2+3y2+3×2=1表示的曲面是( )
A.球面B.柱面C.錐面D.橢球面
2.設函數f(x)=2sinx,則f′(x)等于( )
A.2sinx B.2cosx C.-2sinx D.-2cosx
3.設y=lnx,則y″等于( )
A.1/x B.1/x2C.-1/xD.-1/x2
4.方程z=x2+y2表示的二次曲面是( )
A.球面B.柱面C.圓錐面D.拋物面
5.設y=2×3,則dy=( ).
A.2x2dx B.6x2dx C.3x2dxD.x2dx
6.微分方程(y′)2=x的階數為( )
A.1 B.2 C.3 D.4
7.過點(1,0,0),(0,1,0),(0,0,1)的平面方程為( ).
A.x+y+z=1 B.2x+y+z=1 C.x+2y+z=1 D.x+y+2z=1
8.曲線y=x3+1在點(1,2)處的切線的斜率為( ).
A.1 B.2 C.3 D.4
9.設函數f(x)在[0,b]連續,在(a,b)可導,f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)( ).
A.不存在零點B.存在唯一零點C.存在極大值點D.存在極小值點
10.設Y=e-3x,則dy等于( ).
A.e-3xdx B.-e-3xdx C.-3e-3xdx D.3e-3xdx
二、填空題:共10小題,每小題4分,共40分。
11、將ex展開為x的冪級數,則展開式中含x3項的系數為_____.
12、設y=3+cosx,則y′_____.
13、設y=f(x)可導,點a0=2為f(x)的極小值點,且f(2)=3,則曲線y=f(x)在點(2,3)處的切線方程為______.
14、設函數z=ln(x+y2),則全微分dz=_______.
15、過M設y=f(x)在點x=0處可導,且x=0為f(x)的'極值點,則f′(0)=_____.
16、 (1,-l,2)且垂直于平面2x-y+3z-1=0的直線方程為_____.
17、微分方程y′=0的通解為_____.
18、過M(1,-l,2)且垂直于平面2x-y+3z-1=0的直線方程為_____.
19、設y=2×2+ax+3在點x=1取得極小值,則a=_____.
20、微分方程xyy′=1-x2的通解是_____.
三、解答題:共8小題,共70分。
21、求函數y=x-lnx的單調區間,并求該曲線在點(1,1)處的切線l的方程.
22、設z=z(x,Y)是由方程z+y+z=ez所確定的隱函數,求dz.
23、求函數f(x)=x3-3x+1的單調區間和極值.
24、設l是曲線y=x2+3在點(1,4)處的切線,求由該曲線,切線l及Y軸圍成的平面圖形的面積S.
25、求微分方程y”-y′-2y=3ex的通解.
26、設F(x)為f(x)的一個原函數,且f(x)=xlnx,求F(x).
27、設F(x)為f(x)的一個原函數,且f(x)=xlnx,求F(x). 28、設y=x+sinx,求y′>25、求微分方程y”-y′-2y=3ex的通解。
全國碩士研究生入學統一考試數學三試題 2
一、選擇題
1.已知an+1=an-3,則數列{an}是( )
A.遞增數列 B.遞減數列
C.常數列 D.擺動數列
解析:∵an+1-an=-30,由遞減數列的定義知B選項正確.故選B.
答案:B
2.設an=1n+1+1n+2+1n+3++12n+1(nN*),則( )
A.an+1an B.an+1=an
C.an+1
解析:an+1-an=(1n+2+1n+3++12n+1+12n+2+12n+3)-(1n+1+1n+2++12n+1)=12n+3-12n+1=-12n+32n+2.
∵nN*,an+1-an0.故選C.
答案:C
3.1,0,1,0,的通項公式為( )
A.2n-1 B.1+-1n2
C.1--1n2 D.n+-1n2
解析:解法1:代入驗證法.
解法2:各項可變形為1+12,1-12,1+12,1-12,偶數項為1-12,奇數項為1+12.故選C.
答案:C
4.已知數列{an}滿足a1=0,an+1=an-33an+1(nN*),則a20等于( )
A.0 B.-3
C.3 D.32
解析:由a2=-3,a3=3,a4=0,a5=-3,可知此數列的最小正周期為3,a20=a36+2=a2=-3,故選B.
答案:B
5.已知數列{an}的通項an=n2n2+1,則0.98( )
A.是這個數列的項,且n=6
B.不是這個數列的項
C.是這個數列的項,且n=7
D.是這個數列的項,且n=7
解析:由n2n2+1=0.98,得0.98n2+0.98=n2,n2=49.n=7(n=-7舍去),故選C.
答案:C
6.若數列{an}的通項公式為an=7(34)2n-2-3(34)n-1,則數列{an}的( )
A.最大項為a5,最小項為a6
B.最大項為a6,最小項為a7
C.最大項為a1,最小項為a6
D.最大項為a7,最小項為a6
解析:令t=(34)n-1,nN+,則t(0,1],且(34)2n-2=[(34)n-1]2=t2.
從而an=7t2-3t=7(t-314)2-928.
函數f(t)=7t2-3t在(0,314]上是減函數,在[314,1]上是增函數,所以a1是最大項,故選C.
答案:C
7.若數列{an}的前n項和Sn=32an-3,那么這個數列的通項公式為( )
A.an=23n-1 B.an=32n
C.an=3n+3 D.an=23n
解析:
①-②得anan-1=3.
∵a1=S1=32a1-3,
a1=6,an=23n.故選D.
答案:D
8.數列{an}中,an=(-1)n+1(4n-3),其前n項和為Sn,則S22-S11等于( )
A.-85 B.85
C.-65 D.65
解析:S22=1-5+9-13+17-21+-85=-44,
S11=1-5+9-13++33-37+41=21,
S22-S11=-65.
或S22-S11=a12+a13++a22=a12+(a13+a14)+(a15+a16)++(a21+a22)=-65.故選C.
答案:C
9.在數列{an}中,已知a1=1,a2=5,an+2=an+1-an,則a2007等于( )
A.-4 B.-5
C.4 D.5
解析:依次算出前幾項為1,5,4,-1,-5,-4,1,5,4,發現周期為6,則a2007=a3=4.故選C.
答案:C
10.數列{an}中,an=(23)n-1[(23)n-1-1],則下列敘述正確的是( )
A.最大項為a1,最小項為a3
B.最大項為a1,最小項不存在
C.最大項不存在,最小項為a3
D.最大項為a1,最小項為a4
解析:令t=(23)n-1,則t=1,23,(23)2,且t(0,1]時,an=t(t-1),an=t(t-1)=(t-12)2-14.
故最大項為a1=0.
當n=3時,t=(23)n-1=49,a3=-2081;
當n=4時,t=(23)n-1=827,a4=-152729;
又a3
答案:A
二、填空題
11.已知數列{an}的通項公式an=
則它的前8項依次為________.
解析:將n=1,2,3,8依次代入通項公式求出即可.
答案:1,3,13,7,15,11,17,15
12.已知數列{an}的通項公式為an=-2n2+29n+3,則{an}中的最大項是第________項.
解析:an=-2(n-294)2+8658.當n=7時,an最大.
答案:7
13.若數列{an}的前n項和公式為Sn=log3(n+1),則a5等于________.
解析:a5=S5-S4=log3(5+1)-log3(4+1)=log365.
答案:log365
14.給出下列公式:
①an=sinn
②an=0,n為偶數,-1n,n為奇數;
③an=(-1)n+1.1+-1n+12;
④an=12(-1)n+1[1-(-1)n].
其中是數列1,0,-1,0,1,0,-1,0,的通項公式的有________.(將所有正確公式的序號全填上)
解析:用列舉法可得.
答案:①
三、解答題
15.求出數列1,1,2,2,3,3,的一個通項公式.
解析:此數列化為1+12,2+02,3+12,4+02,5+12,6+02,由分子的'規律知,前項組成正自然數數列,后項組成數列1,0,1,0,1,0,.
an=n+1--1n22,
即an=14[2n+1-(-1)n](nN*).
也可用分段式表示為
16.已知數列{an}的通項公式an=(-1)n12n+1,求a3,a10,a2n-1.
解析:分別用3、10、2n-1去替換通項公式中的n,得
a3=(-1)3123+1=-17,
a10=(-1)101210+1=121,
a2n-1=(-1)2n-1122n-1+1=-14n-1.
17.在數列{an}中,已知a1=3,a7=15,且{an}的通項公式是關于項數n的一次函數.
(1)求此數列的通項公式;
(2)將此數列中的偶數項全部取出并按原來的先后順序組成一個新的數列{bn},求數列{bn}的通項公式.
解析:(1)依題意可設通項公式為an=pn+q,
得p+q=3,7p+q=15.解得p=2,q=1.
{an}的通項公式為an=2n+1.
(2)依題意bn=a2n=2(2n)+1=4n+1,
{bn}的通項公式為bn=4n+1.
18.已知an=9nn+110n(nN*),試問數列中有沒有最大項?如果有,求出最大項,如果沒有,說明理由.
解析:∵an+1-an=(910)(n+1)(n+2)-(910)n(n+1)=(910)n+18-n9,
當n7時,an+1-an
當n=8時,an+1-an=0;
當n9時,an+1-an0.
a1
故數列{an}存在最大項,最大項為a8=a9=99108.
【全國碩士研究生入學統一考試數學三試題】相關文章:
2015年全國碩士研究生入學統一考試英語試題(二)12-07
2015年全國碩士研究生入學統一考試英語試題(一)12-07
2017年全國碩士研究生入學統一考試思想政治理論試題03-11
2017屆全國碩士研究生入學統一考試專業碩士(管理類聯考)綜合試題03-11
2024年全國碩士研究生入學統一考試英語(一)真題09-24
全國普通高校招生統一考試工作總結11-21